Big Data

The data lake will get cloud-y in 2017

  • author image

In 2016, we saw a lot of interesting discussions around the data lake. In the spirit of reflecting on the past and looking at the future of this technology, here are the significant themes I foresee in 2017 for the enterprise data lake. 

The data lake is no longer just Hadoop 

Until recently, the enterprise data lake has largely been discussed, designed and implemented around Hadoop. Doug Cutting, creator of Hadoop, commented that Hadoop is at its core – HDFS, YARN and MapReduce. He went on to say that Spark, for many, is now favored over MapReduce. So that leaves a distributed storage system (HDFS) and a resource negotiator (YARN). HDFS has other alternatives in S3, Azure Blob/Azure Data Lake Store and Google Cloud Storage. YARN has alternatives like Mesos. Also, if you wanted to run Spark, it has its own resource management and job scheduling in-built, in stand-alone mode. This brings in other alternatives like S3/EMR/Redshift/Spark/Azure, which are outside of traditional Hadoop, into the enterprise data lake discussion. 

Separation of storage and compute 

Elasticity is among the most attractive promises of the cloud. Pay for what you consume when you need it, thus keeping your costs under control. It also leads to simple operational models where you can scale and manage your storage and compute independently. 

An example of this is the need for a marketing team that buys terabytes of data to merge that with other internal data but quickly realizes that the quality of this data leaves a lot to be desired. Their internal on-premises enterprise data lake is built for regular, predictable batch loads and investing in more nodes in their Hadoop cluster is not an option. Such a burst load can be well handled by utilizing elastic compute separate from storage. 

Data lake “cloudification” 

Hadoop has proven a challenge for enterprises, especially from an admin and skill set perspective. This has resulted in data lakes with the right intent, but poor execution, stuck in labs. At this point, the cloud seems like a great alternative with the promise of low to no maintenance and removing the skill set required around management, maintenance and admin of the data lake platform infrastructure. The cloud also allows for freedom to research new technologies (which are rapidly changing in the big data world) and experiment with solutions without a large up-front investment. 

Avoiding vendor lock-in 

Various cloud vendors today provide solutions for the data lake. Each vendor has its own advantage with respect to technology, ecosystem, price, ease of use, etc. Multiple options for cloud data lake platforms, on the one hand, provide an advantage for the enterprise to get exposure to the latest innovations, while on the other hand, the same prove to be a challenge to insulate changes from the consumers of these platforms. Like most technology on-ramps, vendors and customers will predictably try many solutions until they settle on one. Vendor changes will come frequently and significantly as their functionality and market focus improves. Enterprises will likely have expert infrastructure teams trying to implement and learning to tweak the interfaces of several vendor offerings concurrently. All this is a good and healthy practice. Application teams will be subjected to all this vendor and solution shakeout. Hundreds of users that have better things to do will naturally become inhibitors to the infrastructure team’s need to make continuous improvements in the cloud infrastructure selection. There needs to be a strategy to protect the application teams in this multi-cloud data lake environment against frequent changes to their data pipelines. 

Operationalizing the data lake 

The enterprise is a retrofit job. Nothing can be introduced into the enterprise in isolation. Any new system needs to work well with the technology, skill set and processes that exist. As data lakes graduate from the labs and become ready for consumption by the enterprise, one of the biggest challenges to adoption and success is around retrofitting and operationalizing it. 

A well-oiled process in an enterprise is mostly automated. How Continuous Integration and Continuous Deployment(CICD), versioning and collaboration are handled will define the enterprise data lake success in an enterprise. Self-service usage led by ease of use, API access and a security framework that supports authentication and authorization in the enterprise with well-defined access controls streamlines consumption of data and services and prevents chaos. 

As the demand for non-traditional data integration increases, the themes that have been developing over the last year should improve the success of enterprise data lake implementation and adoption.   

Ravi Dharnikota is head of enterprise architecture at SnapLogic. He advises C-suite executives as well as business and technology leaders in Fortune 500 companies on their cloud and big data journey. Ravi’s 16 years at Sun Microsystems, CA Technologies and startups in product development, consulting, architecture and leadership roles gives him a unique perspective on challenges encountered by enterprise IT. You can follow him on Twitter @rdharn1 and @SnapLogic.

 

 

 

 

 

 

 

 

 

Post Your Comment




Leave another comment.

In order to post a comment, you must complete the fields indicated above.

Post Your Comment Close

Thank you for your comment.

Thank you for submitting your comment, your opinion is an important part of SandHill.com

Your comment has been submitted for review and will be posted to this article as soon as it is approved.

Back to Article

Topics Related to this Article